Product Description

Couplings:

1. The couplings offer a range of hub and element selection to meet different demands.

2. They can absorb shock and cater for incidental misalignment and damp out small amplitude vibrations.

3. NBR, Urethane, Hytrel elements.

4. Customized requirement is available.

 

Main Products:

1. Timing Belt Pulley (Synchronous Pulley), Timing Bar, Clamping Plate; 

2. Forging, Casting, Stampling Part; 

3. V Belt Pulley and Taper Lock Bush; Sprocket, Idler and Plate Wheel;Spur Gear, Bevel Gear, Rack;  

4. Shaft Locking Device: could be alternative for Ringfeder, Sati, Chiaravalli, Tollok, etc.; 

5. Shaft Coupling: including Miniature couplings, Curved tooth coupling, Chain coupling, HRC coupling, 
    Normex coupling, Type coupling, GE Coupling, torque limiter, Universal Joint;  

6. Shaft Collars: including Setscrew Type, Single Split and Double Splits; 

7. Gear & Rack: Spur gear/rack, bevel gear, helical gear/rack.

8. Other customized Machining Parts according to drawings (OEM) Forging, Casting, Stamping Parts.

PACKING

Packaging
                      
    Packing  

 

We use standard export wooden case, carton and pallet, but we can also pack it as per your special requirements.

OUR COMPANY
 

ZheJiang Mighty Machinery Co., Ltd. specializes in offering best service and the most competitive price for our customer.

After over 10 years’ hard work, MIGHTY’s business has grown rapidly and become an important partner for oversea clients in the industrial field and become a holding company for 3 manufacturing factories.

MIGHTY’s products have obtained reputation of domestic and oversea customers with taking advantage of technology, management, quality and very competitive price.

Your satisfaction is the biggest motivation for our work, choose us to get high quality products and best service.


OUR FACTORY

FAQ

Q: Are you trading company or manufacturer ?

A: We are factory.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q: What is your terms of payment ?

A: Payment=1000USD, 30% T/T in advance ,balance before shippment.

We warmly welcome friends from domestic and abroad come to us for business negotiation and cooperation for mutual benefit.To supply customers excellent quality products with good price and punctual delivery time is our responsibility.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

clamp coupling

Simultaneous Handling of Axial Motion and Angular Misalignment by Beam Couplings

Beam couplings are designed to handle both axial motion and angular misalignment simultaneously in motion control systems. Their unique helical beam design allows them to accommodate various types of misalignment, providing flexibility in multiple axes. Let’s explore how beam couplings achieve this:

1. Axial Motion:

Beam couplings can compensate for axial motion, which occurs when the two connected shafts are not collinear and have some linear offset along their common axis. The helical beams of the coupling can elongate or compress to absorb the axial movement between the shafts. This axial flexibility enables the coupling to maintain a continuous and efficient connection even when the shafts experience slight linear displacement.

2. Angular Misalignment:

Angular misalignment refers to the situation where the two shafts are not perfectly aligned and are at an angle to each other. Beam couplings handle angular misalignment by allowing the helical beams to flex, bending at an angle to accommodate the misaligned shafts. The flexible beams can twist and adjust their shape as needed, providing a reliable connection between the shafts and transmitting torque efficiently.

3. Simultaneous Handling:

What makes beam couplings advantageous is their ability to handle both axial motion and angular misalignment simultaneously. As the shafts experience angular misalignment, the helical beams can flex to compensate for the misalignment angle. At the same time, if there is any axial motion between the shafts, the beams can elongate or compress to absorb the linear offset. This simultaneous handling of axial motion and angular misalignment allows beam couplings to maintain smooth operation and effective torque transmission even in applications with complex misalignment requirements.

It is essential to select the appropriate size and type of beam coupling based on the specific application’s misalignment characteristics and torque requirements. Properly installed and maintained beam couplings can provide reliable and efficient performance, ensuring accurate motion control and extended system life.

clamp coupling

Beam Couplings for Specific Industries and Specialized Applications

Yes, there are beam couplings specifically designed to meet the unique requirements of various industries and specialized applications. Manufacturers offer a wide range of beam coupling options with different materials, designs, and features tailored to specific use cases. Here are some examples of beam couplings designed for specific industries and applications:

  • Food and Beverage Industry:

    Beam couplings used in the food and beverage industry are typically made from stainless steel or food-grade materials to meet strict hygiene standards. These couplings are resistant to corrosion, easy to clean, and comply with FDA and USDA regulations. They are commonly found in conveyor systems, packaging equipment, and food processing machinery.

  • Medical and Pharmaceutical Industry:

    Beam couplings used in medical and pharmaceutical applications are designed to meet stringent cleanliness and precision requirements. They are often made from materials like stainless steel or plastic, ensuring biocompatibility and resistance to sterilization processes. These couplings are used in medical robots, imaging equipment, and precision medical devices.

  • Aerospace and Defense Industry:

    Beam couplings for aerospace and defense applications must withstand extreme environments, high accelerations, and vibrations. They are commonly made from lightweight yet strong materials like aluminum or high-performance alloys. These couplings are used in aircraft control systems, satellite components, and defense equipment.

  • Robotics:

    Beam couplings used in robotics require high torsional stiffness and low inertia to optimize robotic performance. They are often made from materials like aluminum or carbon fiber. These couplings are used in robotic joints and end-effectors to achieve precise and rapid motion.

  • Automotive Industry:

    Beam couplings in the automotive industry need to handle high torque loads and provide reliable power transmission. They are commonly made from steel or aluminum to balance strength and weight. These couplings are used in automotive steering systems, transmissions, and engine components.

  • Renewable Energy:

    Beam couplings used in renewable energy applications, such as wind turbines and solar tracking systems, are designed to withstand harsh environmental conditions and provide precise motion control. They are often made from materials with good corrosion resistance. These couplings help optimize energy production and enhance system efficiency.

Additionally, there are beam couplings designed for specialized applications, such as vacuum environments, cleanrooms, or underwater operations. These couplings have specific features to address the challenges of their respective applications, ensuring reliable performance in their intended environments.

Manufacturers of beam couplings offer a wide selection of standard and custom designs to cater to the diverse needs of different industries and specialized applications. When choosing a beam coupling, it’s essential to consider the specific requirements of the application to ensure optimal performance and longevity.

clamp coupling

Handling Misalignment and Compensating for Shaft Offset in Beam Couplings

Beam couplings are designed to handle misalignment between connected shafts and compensate for shaft offset in motion control systems. Their flexible and helical beam structure allows them to accommodate various types of misalignment, ensuring smooth and reliable operation. Here’s how beam couplings handle misalignment and compensate for shaft offset:

  • Helical Beam Design:

    Beam couplings consist of one or more helical beams, which are thin, flexible metal strips arranged in a helix shape. The helical beam design gives beam couplings their characteristic flexibility, allowing them to bend and twist in response to misalignment and shaft offset.

  • Angular Misalignment:

    If the connected shafts are not collinear and are at an angle to each other, it results in angular misalignment. Beam couplings can handle angular misalignment by allowing the helical beams to flex, bending at an angle to accommodate the misaligned shafts. The flexibility of the beams enables the coupling to transmit torque smoothly even when the shafts are not perfectly aligned.

  • Axial Misalignment:

    Axial misalignment occurs when the two shafts are not on the same axis or are not aligned in the same line. Beam couplings can compensate for axial misalignment by permitting the helical beams to elongate or compress in the axial direction. This axial flexibility allows the coupling to accommodate the offset between the shafts without causing excessive stress on the components.

  • Parallel Misalignment:

    Parallel misalignment refers to the situation where the two shafts are not at the same height or parallel to each other. Beam couplings handle parallel misalignment by permitting the helical beams to shift laterally. This lateral movement allows the coupling to adjust to the offset between the shafts and maintain an effective connection.

  • Compensation Range:

    Beam couplings have a specified range of misalignment they can accommodate. The amount of misalignment they can handle depends on the number of helical beams and the design of the coupling. Multi-beam couplings typically have a higher misalignment compensation range compared to single-beam couplings, making them more suitable for applications with more significant misalignment requirements.

  • Limitations:

    While beam couplings can compensate for a certain degree of misalignment, they do have limitations. Excessive misalignment beyond the coupling’s rated capacity can lead to premature wear, increased stress on the components, and reduced coupling performance. It’s essential to operate the beam coupling within its specified misalignment limits to ensure optimal functioning and longevity.

In summary, beam couplings handle misalignment and compensate for shaft offset by virtue of their flexible helical beam design. The ability to bend, twist, elongate, and shift laterally enables them to accommodate angular, axial, and parallel misalignment in motion control systems. Choosing the appropriate beam coupling type and staying within its rated misalignment range are essential to ensure effective compensation and reliable operation in various applications.

China supplier Flexible Coupling Parallel Beam Coupling Setscrew Type/ Clamping Type  China supplier Flexible Coupling Parallel Beam Coupling Setscrew Type/ Clamping Type
editor by CX 2024-04-29