Product Description

Couplings:

1. The couplings offer a range of hub and element selection to meet different demands.

2. They can absorb shock and cater for incidental misalignment and damp out small amplitude vibrations.

3. NBR, Urethane, Hytrel elements.

4. Customized requirement is available.

 

Main Products:

1. Timing Belt Pulley (Synchronous Pulley), Timing Bar, Clamping Plate; 

2. Forging, Casting, Stampling Part; 

3. V Belt Pulley and Taper Lock Bush; Sprocket, Idler and Plate Wheel;Spur Gear, Bevel Gear, Rack;  

4. Shaft Locking Device: could be alternative for Ringfeder, Sati, Chiaravalli, Tollok, etc.; 

5. Shaft Coupling: including Miniature couplings, Curved tooth coupling, Chain coupling, HRC coupling, 
    Normex coupling, Type coupling, GE Coupling, torque limiter, Universal Joint;  

6. Shaft Collars: including Setscrew Type, Single Split and Double Splits; 

7. Gear & Rack: Spur gear/rack, bevel gear, helical gear/rack.

8. Other customized Machining Parts according to drawings (OEM) Forging, Casting, Stamping Parts.

PACKING

Packaging
                      
    Packing  

 

We use standard export wooden case, carton and pallet, but we can also pack it as per your special requirements.

OUR COMPANY
 

ZheJiang Mighty Machinery Co., Ltd. specializes in offering best service and the most competitive price for our customer.

After over 10 years’ hard work, MIGHTY’s business has grown rapidly and become an important partner for oversea clients in the industrial field and become a holding company for 3 manufacturing factories.

MIGHTY’s products have obtained reputation of domestic and oversea customers with taking advantage of technology, management, quality and very competitive price.

Your satisfaction is the biggest motivation for our work, choose us to get high quality products and best service.


OUR FACTORY

FAQ

Q: Are you trading company or manufacturer ?

A: We are factory.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q: What is your terms of payment ?

A: Payment=1000USD, 30% T/T in advance ,balance before shippment.

We warmly welcome friends from domestic and abroad come to us for business negotiation and cooperation for mutual benefit.To supply customers excellent quality products with good price and punctual delivery time is our responsibility.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

clamp coupling

Specific Maintenance Requirements for Prolonging the Life of Beam Couplings

Proper maintenance is essential for prolonging the life and ensuring the optimal performance of beam couplings in motion control systems. While beam couplings are designed for reliability and low maintenance, some specific maintenance practices can help maximize their longevity. Here are the key maintenance requirements:

  • Regular Inspection:

    Perform regular visual inspections of the beam couplings to check for signs of wear, damage, or misalignment. Look for any visible cracks, deformations, or signs of corrosion. Detecting issues early can prevent further damage and potential coupling failure.

  • Lubrication:

    For couplings with movable components, such as beam couplings with elastomeric elements or bellows, proper lubrication is crucial. Follow the manufacturer’s recommendations for lubrication intervals and use the appropriate lubricants. Lubrication helps reduce friction and wear, ensuring smooth operation.

  • Torque Checks:

    Periodically check the tightness of the coupling’s fasteners, such as set screws or clamps. Over time, vibrations and loads can cause these fasteners to loosen. Make sure they are properly tightened to maintain a secure connection between the shafts and the coupling.

  • Environmental Protection:

    If the beam couplings are exposed to harsh environments, consider implementing protective measures. Shield the couplings from dirt, dust, moisture, and corrosive substances that could impact their performance and lead to premature wear.

  • Alignment Checks:

    Regularly check the alignment of the connected shafts. Misalignment can place additional stress on the coupling and reduce its lifespan. Make any necessary adjustments to ensure proper shaft alignment within the coupling’s specified tolerance.

  • Load Capacity:

    Ensure that the beam coupling is operating within its rated load capacity. Avoid exceeding the maximum torque or axial load to prevent overloading the coupling and potential failure.

  • Replace Worn Components:

    If any components of the beam coupling show signs of wear or damage beyond their limits, replace them promptly. Continuing to use worn or damaged couplings can lead to unsafe operation and compromise system performance.

By following these specific maintenance requirements, you can prolong the life of beam couplings, reduce the risk of unexpected failures, and maintain the overall efficiency and reliability of your motion control system. Regular inspections and proactive maintenance practices are crucial to ensure trouble-free operation and maximize the lifespan of beam couplings in various applications.

clamp coupling

Beam Couplings Accommodating Different Shaft Diameters and Mounting Configurations

Beam couplings are highly versatile and can accommodate different shaft diameters and mounting configurations, making them suitable for a wide range of motion control applications. Their design and construction allow for flexibility in adapting to various shaft sizes and mounting setups. Here’s how beam couplings achieve this:

  • Multiple Bore Sizes:

    Beam couplings are available in various bore sizes to match different shaft diameters. Manufacturers offer a wide range of coupling sizes, ensuring that there is an appropriate coupling size available to fit the specific shaft diameter of your application. Some beam couplings come with set screws or clamps that securely fasten onto the shafts, accommodating shafts of different sizes within the coupling’s specified range.

  • Clamp or Set Screw Mounting:

    Beam couplings commonly employ clamp or set screw mounting methods to connect to the shafts. Clamp-style couplings use split hubs that can be tightened around the shaft with screws, providing a secure and concentric connection. Set screw couplings, on the other hand, utilize screws to press against the shaft, achieving a firm and non-marring grip.

  • Step Bores and Adapters:

    In cases where the shafts have significantly different diameters or when transitioning between metric and imperial measurements, some beam couplings offer step bores or adapter options. Step bores feature multiple bore sizes within the same coupling, allowing for flexibility in accommodating various shaft diameters. Adapters are also available to bridge the gap between different shaft sizes.

  • Customization:

    For unique or specialized applications, manufacturers may offer customization options for beam couplings. This could include modifying the bore sizes, lengths, or other design parameters to suit specific shaft dimensions and mounting configurations.

  • Compatibility with Misalignment:

    Beam couplings are designed to handle misalignment between the shafts. This characteristic provides additional flexibility during installation, as it can compensate for slight positioning errors or misalignment during assembly.

When selecting a beam coupling for your application, ensure that the chosen coupling size matches the shaft diameters within the specified range. Also, consider the mounting method that best suits your setup, whether it’s clamp-style or set screw-type. For applications with specific requirements, such as adapting between different shaft sizes, explore options with step bores or adapters or inquire about custom solutions from coupling manufacturers.

Overall, the ability of beam couplings to accommodate different shaft diameters and mounting configurations makes them a versatile and widely-used choice in motion control systems across various industries.

clamp coupling

Differences between Single-Beam and Multi-Beam Couplings

Single-beam and multi-beam couplings are two common types of beam couplings used in motion control applications. While they both provide flexibility for misalignment compensation, they have distinct differences in design and performance. Let’s explore these differences:

  • Structure:

    A single-beam coupling consists of a single helical beam that connects the two shafts. It is a straightforward design with a single helix providing angular misalignment compensation. On the other hand, a multi-beam coupling has multiple helical beams arranged in parallel around the circumference of the coupling. The multiple beams increase its flexibility and enable compensation for angular, axial, and parallel misalignment.

  • Misalignment Compensation:

    Both single-beam and multi-beam couplings are capable of compensating for misalignment between connected shafts. However, the level of compensation differs between the two types. Single-beam couplings are more suitable for applications with primarily angular misalignment. They can handle small amounts of axial and parallel misalignment but are less effective than multi-beam couplings in this regard. Multi-beam couplings, with their multiple beams, can efficiently accommodate more extensive misalignment in all three axes, making them suitable for applications with more complex misalignment requirements.

  • Torsional Rigidity:

    Single-beam couplings typically have lower torsional rigidity compared to multi-beam couplings. This means that single-beam couplings may exhibit slightly more torsional flexibility and compliance under torque compared to their multi-beam counterparts. As a result, multi-beam couplings are often preferred in applications where high torsional rigidity is essential to maintain precise motion control and minimize backlash.

  • Applications:

    The choice between single-beam and multi-beam couplings depends on the specific requirements of the application. Single-beam couplings are commonly used in applications where space is limited, and primarily angular misalignment needs to be compensated. They are suitable for less demanding misalignment scenarios and can be found in various motion control systems, including small automation machinery and robotics.

    Multi-beam couplings are chosen for applications that require more comprehensive misalignment compensation. They excel in situations where misalignment can occur in multiple axes and are often used in precision motion control systems, optical equipment, and applications with high torsional rigidity and accuracy requirements.

In summary, single-beam and multi-beam couplings both offer flexibility for misalignment compensation in motion control systems. Single-beam couplings are simple, space-efficient, and suitable for applications with primarily angular misalignment. On the other hand, multi-beam couplings provide enhanced misalignment compensation in all three axes and offer higher torsional rigidity, making them ideal for precision applications with more complex misalignment requirements.

China Good quality Radial Beam Flexible Coupling Nice Quality with Best Price  China Good quality Radial Beam Flexible Coupling Nice Quality with Best Price
editor by CX 2024-04-24