Product Description

Product Description

A beam coupling, also known as helical coupling, is a flexible coupling for transmitting torque between 2 shafts while allowing for angular misalignment, parallel offset and even axial motion, of 1 shaft relative to the other. This design utilizes A single piece of material and becomes flexible by removal of material along a spiral path resulting in a curved flexible beam of helical shape. Since it is made from a single piece of material, the Beam Style coupling does not exhibit the backlash found in some multi-piece couplings. Another advantage of being an all machined coupling is the possibility to incorporate features into the final product while still keep the single piece integrity.

 

Changes to the lead of the helical beam provide changes to misalignment capabilities as well as other performance characteristics such as torque capacity and torsional stiffness. It is even possible to have multiple starts within the same helix.

 

The material used to manufacture the beam coupling also affects its performance and suitability for specific applications such as food, medical and aerospace. Materials are typically aluminum alloy and stainless steel, but they can also be made in acetal, maraging steel and titanium. The most common applications are attaching encoders to shafts and motion control for robotics.
Features
1.Materail: Aluminium alloy or steel
2.Elastic Spider: Three type of Elatic Spider can be choosed 86SH. A 92SH. A 98SH. A 
3.Surface treatment: black finished / Anodizing 
4.High sensitivity  High torque rigid Zero back lash 
5.Type of shaft lock: Set screw or Clamp type 

6.Stock to ensure a prompt delivery with in 2 weeks.

7.High-performance with competitive prices.
Except our standard parts, we also can make the parts according customers’ drawing or design according customer requirement, please send us enquiry if there any need.

Detailed Photos

Product Parameters

Packaging & Shipping

Package  Standard suitable package / Pallet or container.
 Polybag inside export carton outside, blister and Tape and reel package available.
 If customers have specific requirements for the packaging, we will gladly accommodate.
Shipping

 10-20working days ofter payment receipt comfirmed (based on actual quantity).
 Packing standard export packing or according to customers demand.   

 Professional goods shipping forward.

Company Profile

FAQ

Q: Are you trading company or manufacturer?

A: We are factory.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q: What is your terms of payment ?

A: Payment=1000USD, 30% T/T in advance ,balance before shippment.

We warmly welcome friends from domestic and abroad come to us for business negotiation and cooperation for mutual benefit. To supply customers excellent quality products with good price and punctual delivery time is our responsibility.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

clamp coupling

Specific Maintenance Requirements for Prolonging the Life of Beam Couplings

Proper maintenance is essential for prolonging the life and ensuring the optimal performance of beam couplings in motion control systems. While beam couplings are designed for reliability and low maintenance, some specific maintenance practices can help maximize their longevity. Here are the key maintenance requirements:

  • Regular Inspection:

    Perform regular visual inspections of the beam couplings to check for signs of wear, damage, or misalignment. Look for any visible cracks, deformations, or signs of corrosion. Detecting issues early can prevent further damage and potential coupling failure.

  • Lubrication:

    For couplings with movable components, such as beam couplings with elastomeric elements or bellows, proper lubrication is crucial. Follow the manufacturer’s recommendations for lubrication intervals and use the appropriate lubricants. Lubrication helps reduce friction and wear, ensuring smooth operation.

  • Torque Checks:

    Periodically check the tightness of the coupling’s fasteners, such as set screws or clamps. Over time, vibrations and loads can cause these fasteners to loosen. Make sure they are properly tightened to maintain a secure connection between the shafts and the coupling.

  • Environmental Protection:

    If the beam couplings are exposed to harsh environments, consider implementing protective measures. Shield the couplings from dirt, dust, moisture, and corrosive substances that could impact their performance and lead to premature wear.

  • Alignment Checks:

    Regularly check the alignment of the connected shafts. Misalignment can place additional stress on the coupling and reduce its lifespan. Make any necessary adjustments to ensure proper shaft alignment within the coupling’s specified tolerance.

  • Load Capacity:

    Ensure that the beam coupling is operating within its rated load capacity. Avoid exceeding the maximum torque or axial load to prevent overloading the coupling and potential failure.

  • Replace Worn Components:

    If any components of the beam coupling show signs of wear or damage beyond their limits, replace them promptly. Continuing to use worn or damaged couplings can lead to unsafe operation and compromise system performance.

By following these specific maintenance requirements, you can prolong the life of beam couplings, reduce the risk of unexpected failures, and maintain the overall efficiency and reliability of your motion control system. Regular inspections and proactive maintenance practices are crucial to ensure trouble-free operation and maximize the lifespan of beam couplings in various applications.

clamp coupling

Beam Couplings for Specific Industries and Specialized Applications

Yes, there are beam couplings specifically designed to meet the unique requirements of various industries and specialized applications. Manufacturers offer a wide range of beam coupling options with different materials, designs, and features tailored to specific use cases. Here are some examples of beam couplings designed for specific industries and applications:

  • Food and Beverage Industry:

    Beam couplings used in the food and beverage industry are typically made from stainless steel or food-grade materials to meet strict hygiene standards. These couplings are resistant to corrosion, easy to clean, and comply with FDA and USDA regulations. They are commonly found in conveyor systems, packaging equipment, and food processing machinery.

  • Medical and Pharmaceutical Industry:

    Beam couplings used in medical and pharmaceutical applications are designed to meet stringent cleanliness and precision requirements. They are often made from materials like stainless steel or plastic, ensuring biocompatibility and resistance to sterilization processes. These couplings are used in medical robots, imaging equipment, and precision medical devices.

  • Aerospace and Defense Industry:

    Beam couplings for aerospace and defense applications must withstand extreme environments, high accelerations, and vibrations. They are commonly made from lightweight yet strong materials like aluminum or high-performance alloys. These couplings are used in aircraft control systems, satellite components, and defense equipment.

  • Robotics:

    Beam couplings used in robotics require high torsional stiffness and low inertia to optimize robotic performance. They are often made from materials like aluminum or carbon fiber. These couplings are used in robotic joints and end-effectors to achieve precise and rapid motion.

  • Automotive Industry:

    Beam couplings in the automotive industry need to handle high torque loads and provide reliable power transmission. They are commonly made from steel or aluminum to balance strength and weight. These couplings are used in automotive steering systems, transmissions, and engine components.

  • Renewable Energy:

    Beam couplings used in renewable energy applications, such as wind turbines and solar tracking systems, are designed to withstand harsh environmental conditions and provide precise motion control. They are often made from materials with good corrosion resistance. These couplings help optimize energy production and enhance system efficiency.

Additionally, there are beam couplings designed for specialized applications, such as vacuum environments, cleanrooms, or underwater operations. These couplings have specific features to address the challenges of their respective applications, ensuring reliable performance in their intended environments.

Manufacturers of beam couplings offer a wide selection of standard and custom designs to cater to the diverse needs of different industries and specialized applications. When choosing a beam coupling, it’s essential to consider the specific requirements of the application to ensure optimal performance and longevity.

clamp coupling

Considerations for Using Beam Couplings in High-Speed Applications

When using beam couplings in high-speed applications, several specific considerations are essential to ensure optimal performance, safety, and reliability. High-speed operation introduces additional challenges that need to be addressed to maximize the benefits of beam couplings. Here are the key considerations:

  • 1. Balance and Runout:

    Ensure that the beam coupling and connected components are well-balanced and have minimal runout. Imbalanced couplings can cause vibration and resonance at high speeds, leading to reduced precision and potential damage to the system. Minimizing runout helps maintain smooth and stable operation.

  • 2. Material Selection:

    Choose high-quality materials for the beam coupling that can withstand the forces and stresses experienced during high-speed operation. High-strength alloys, such as stainless steel or aluminum, are commonly used for beam couplings in high-speed applications due to their excellent mechanical properties and fatigue resistance.

  • 3. Torsional Rigidity:

    Consider the required torsional rigidity for your specific high-speed application. While beam couplings offer good torsional rigidity, extremely high-speed applications might demand specialized couplings with even higher rigidity to ensure accurate torque transmission and minimize torsional deformation.

  • 4. Critical Speed:

    Be aware of the critical speed of the beam coupling, which is the rotational speed at which the coupling’s natural frequency coincides with the operating speed. At critical speed, the coupling can experience excessive vibration and become susceptible to resonance, leading to potential failure. Operating below the critical speed is essential to avoid such issues.

  • 5. Lubrication:

    For high-speed applications, proper lubrication of the beam coupling is crucial to reduce friction, wear, and heat generation. Lubrication also helps dissipate any generated heat, maintaining the coupling’s integrity during prolonged operation.

  • 6. Cooling:

    In applications with extended high-speed operation, consider implementing cooling mechanisms to prevent overheating of the beam coupling. Excessive heat can affect the material properties and lead to premature wear or failure.

  • 7. Dynamic Balancing:

    For high-speed systems, it is essential to dynamically balance the rotating components, including the beam coupling, to minimize vibration and prevent potential damage to the system and surrounding equipment.

  • 8. Regular Inspection and Maintenance:

    Perform regular inspections and maintenance to detect any signs of wear, fatigue, or misalignment in the beam coupling. Addressing issues promptly can prevent unexpected failures and costly downtime.

By carefully considering these factors and ensuring proper selection, installation, and maintenance of beam couplings in high-speed applications, you can enhance performance, extend the life of the coupling, and promote safe and reliable operation in your motion control system.

China high quality Stainless Steel Aluminum Miniature Flexible Beam Coupling Encoder Coupling  China high quality Stainless Steel Aluminum Miniature Flexible Beam Coupling Encoder Coupling
editor by CX 2024-05-07