Product Description

Aluminum Encoder Coupling Beam Coupling

 

Description of Aluminum Encoder Coupling Beam Coupling

1. One-piece metallic beam coupling
2. Zero backlash, flexible shaft
3. Spiral and parallel cut designs available
4. Accommodates misalignment and shaft endplay
5. Identical clockwise and counterclockwise rotation
6. Available in aluminum or stainless steel
7. Multiple bore and shaft connecting configurations
 

Parameter of Aluminum Encoder Coupling Beam Coupling

Model

D (mm)

L (mm)

d1-d2 (mm)

hex screw

L1 (mm)

L2 (mm)

L3 (mm)

Fasten Torque (n.m)

LR-D-D15L20

15

20

3.0-8.0

M3.

2.5

2

0.4

1.2

LR-D-D19L25

19

25

6.0-10.0

M3.

3

2

0.4

1.2

LR-D-D25L30

25

30

8.0-12.0

M4

4

2

0.4

2.5

LR-D-D30L35

30

35

8.0-18.0

M4

4

2.5

0.5

2.5

LR-D-D35L40

35

40

8.0-22.0

M5

5

2.5

0.5

5

LR-D-D40L45

40

45

10.0-28.0

M6

6

3.5

0.6

8

Model

Max bore (mm)

Rated Torque (n.m)

Max Torque (n.m)

Max speed (rpm)

Moment of Inertia (kg.m2)

Permissible Radial Deviation (degree)

Permissible Angular Deviation (degree)

LR-D-D15L20

8

0.5

1

30000

2.5*10-7

0.05

0.5

LR-D-D19L25

10

1

2

25000

5.8*10-7

0.05

0.5

LR-D-D25L30

12

1.5

3

18000

1.8*10-6

0.05

0.5

LR-D-D30L35

18

2

4

16000

4.7*10-6

0.05

0.5

LR-D-D35L40

22

3

6

14000

1.1*10-5

0.05

0.5

LR-D-D40L45

28

6

12

12000

2.3*10-5

0.05

0.5

Model

D (mm)

L (mm)

d1-d2 (mm)

Fasten Torque (n.m)

LT-D-D15L20

15

20

4.0-5.0

0.7

LT-D-D19L25

19

25

6.0-10.0

0.7

LT-D-D25L30

25

30

8.0-12.0

0.7

LT-D-D30L35

30

35

8.0-18.0

1.7

LT-D-D35L40

35

40

8.0-22.0

4

LT-D-D40L45

40

45

10.0-28.0

4

Model

Max bore (mm)

Rated Torque (n.m)

Max Torque (n.m)

Max speed (rpm)

Moment of Inertia

(kg.m2)

Permissible Radial Deviation

(degree)

Permissible Angular Deviation

(degree)

LT-D-D15L20

5

0.5

1

30000

2.5*10-7

0.05

0.5

LT-D-D19L25

10

1

2

25000

5.8*10-7

0.05

0.5

LT-D-D25L30

12

1.5

3

18000

1.8*10-6

0.05

0.5

LT-D-D30L35

18

2

4

16000

4.7*10-6

0.05

0.5

LT-D-D35L40

22

3

6

14000

1.1*10-5

0.05

0.5

LT-D-D40L45

28

6

12

12000

2.3*10-5

0.05

0.5

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

clamp coupling

Temperature and Environmental Limits for Various Beam Coupling Materials

The temperature and environmental limits of beam coupling materials depend on their specific composition and properties. Different materials have varying degrees of resistance to temperature extremes, chemicals, humidity, and other environmental factors. Here are some common beam coupling materials and their associated temperature and environmental limits:

  • 1. Stainless Steel:

    Stainless steel beam couplings are known for their excellent mechanical properties and resistance to corrosion. They can typically operate within a wide temperature range, from -40°C to 300°C (-40°F to 572°F). Stainless steel is also resistant to most chemicals, making it suitable for various environments, including industrial and outdoor applications.

  • 2. Aluminum:

    Aluminum beam couplings offer lightweight construction and moderate mechanical properties. They have a more limited temperature range compared to stainless steel, typically operating between -20°C to 120°C (-4°F to 248°F). While aluminum has good corrosion resistance in certain environments, it is not as durable as stainless steel in harsh conditions.

  • 3. Brass:

    Brass beam couplings have reasonable mechanical properties and corrosion resistance. They are suitable for applications with temperatures ranging from -20°C to 100°C (-4°F to 212°F). Brass is more susceptible to corrosion in certain environments, so it is essential to consider the specific application’s conditions.

  • 4. Plastic/Polymer:

    Beam couplings made from plastic or polymer materials offer lightweight and cost-effective solutions. However, their temperature limits are more restricted compared to metal couplings. They typically operate between -30°C to 80°C (-22°F to 176°F). These couplings may not be suitable for high-temperature or chemically aggressive environments.

  • 5. Carbon Steel:

    Carbon steel beam couplings are known for their strength and mechanical properties. They generally operate between -40°C to 120°C (-40°F to 248°F). Carbon steel is vulnerable to corrosion, so it may not be ideal for applications in corrosive or humid environments without proper protection.

It’s crucial to consider the temperature and environmental conditions of your specific application when selecting a beam coupling material. Choosing a material that can withstand the intended operating conditions will ensure the longevity and reliable performance of the coupling.

Additionally, keep in mind that various beam coupling manufacturers may offer specific variations of materials with different properties and limits. Always refer to the manufacturer’s datasheets and technical documentation for precise information on the temperature and environmental limits of their beam coupling products.

clamp coupling

Beam Couplings for Specific Industries and Specialized Applications

Yes, there are beam couplings specifically designed to meet the unique requirements of various industries and specialized applications. Manufacturers offer a wide range of beam coupling options with different materials, designs, and features tailored to specific use cases. Here are some examples of beam couplings designed for specific industries and applications:

  • Food and Beverage Industry:

    Beam couplings used in the food and beverage industry are typically made from stainless steel or food-grade materials to meet strict hygiene standards. These couplings are resistant to corrosion, easy to clean, and comply with FDA and USDA regulations. They are commonly found in conveyor systems, packaging equipment, and food processing machinery.

  • Medical and Pharmaceutical Industry:

    Beam couplings used in medical and pharmaceutical applications are designed to meet stringent cleanliness and precision requirements. They are often made from materials like stainless steel or plastic, ensuring biocompatibility and resistance to sterilization processes. These couplings are used in medical robots, imaging equipment, and precision medical devices.

  • Aerospace and Defense Industry:

    Beam couplings for aerospace and defense applications must withstand extreme environments, high accelerations, and vibrations. They are commonly made from lightweight yet strong materials like aluminum or high-performance alloys. These couplings are used in aircraft control systems, satellite components, and defense equipment.

  • Robotics:

    Beam couplings used in robotics require high torsional stiffness and low inertia to optimize robotic performance. They are often made from materials like aluminum or carbon fiber. These couplings are used in robotic joints and end-effectors to achieve precise and rapid motion.

  • Automotive Industry:

    Beam couplings in the automotive industry need to handle high torque loads and provide reliable power transmission. They are commonly made from steel or aluminum to balance strength and weight. These couplings are used in automotive steering systems, transmissions, and engine components.

  • Renewable Energy:

    Beam couplings used in renewable energy applications, such as wind turbines and solar tracking systems, are designed to withstand harsh environmental conditions and provide precise motion control. They are often made from materials with good corrosion resistance. These couplings help optimize energy production and enhance system efficiency.

Additionally, there are beam couplings designed for specialized applications, such as vacuum environments, cleanrooms, or underwater operations. These couplings have specific features to address the challenges of their respective applications, ensuring reliable performance in their intended environments.

Manufacturers of beam couplings offer a wide selection of standard and custom designs to cater to the diverse needs of different industries and specialized applications. When choosing a beam coupling, it’s essential to consider the specific requirements of the application to ensure optimal performance and longevity.

clamp coupling

Beam Coupling: Function and Role in Mechanical Systems

A beam coupling, also known as a helical coupling or helical beam coupling, is a type of flexible coupling used in mechanical systems to connect two shafts while compensating for misalignment and transmitting torque. It consists of one or more helical beams (usually made of metal) that connect the shafts and allow for angular, axial, and parallel misalignment while maintaining a torsionally rigid connection. Here’s how a beam coupling functions in mechanical systems:

Structure:

A beam coupling typically has two ends, each with a helical beam. The beams are oriented at opposite angles to create a helix shape. The beams can vary in number, and some designs may include additional features like slits or keyways to enhance flexibility or improve torque capacity.

Misalignment Compensation:

When the two shafts connected by a beam coupling are misaligned, the helical beams flex, allowing the coupling to compensate for different types of misalignment. Angular misalignment occurs when the shafts are not collinear, axial misalignment when they are not on the same axis, and parallel misalignment when the shafts are not at the same height. The flexibility of the helical beams allows the coupling to accommodate these misalignments, reducing the stresses on the connected components.

Torque Transmission:

The helical beams of a beam coupling efficiently transmit torque from one shaft to the other. The beams twist and deform slightly under the applied torque but return to their original shape once the torque is removed. This torsional rigidity ensures that the coupling efficiently transfers rotational power while minimizing backlash and maintaining accurate positioning in motion control systems.

Damping and Vibration Absorption:

Beam couplings can provide some level of vibration dampening due to their inherent flexibility. The slight deformation of the beams can absorb shocks and vibrations, reducing the transmission of vibrations between the connected shafts.

Applications:

Beam couplings find applications in various mechanical systems, including robotics, CNC machines, stepper motor drives, and other motion control systems. They are especially useful in applications that require moderate misalignment compensation, high torsional rigidity, and low backlash.

Considerations:

While beam couplings offer several advantages, they do have some limitations. They may not be suitable for applications with high misalignment requirements or high torque loads, as excessive misalignment or torque can cause premature wear or failure of the coupling. Additionally, beam couplings may have limited axial stiffness, making them less suitable for applications with significant axial loads.

In summary, a beam coupling is a flexible coupling with helical beams that allows for misalignment compensation, efficient torque transmission, and some vibration dampening. Its design and flexibility make it an excellent choice for various mechanical systems, particularly those that require moderate misalignment compensation and high torsional rigidity.

China supplier Aluminum Encoder Coupling Beam Coupling  China supplier Aluminum Encoder Coupling Beam Coupling
editor by CX 2024-05-03