Product Description

Product Name Metal bellow coupling
Material Aluminum 
Type BC16-82
Structure  1 shaft ( 1 / 1a / 1b ) with bore
Bore size  4-42 mm
Weight  About 8-1200G g / pcs
packing plastic bag +paper box +wooden box +wooden pallet

1. Engineering: machine tools, foundry equipments, conveyors, compressors, painting systems, etc.

2. Pharmaceuticals& Food Processing: pulp mill blowers, conveyor in warehouse, agitators, grain, boiler, bakery machine, labeling machine, robots, etc.

3. Agriculture Industries: cultivator, rice winnower tractor, harvester, rice planter, farm equipment, etc.

4. Texitile Mills: looms, spinning, wrappers, high-speed auto looms, processing machine, twister, carding machine, ruler calendar machine, high speed winder, etc.

5. Printing Machinery: newspaper press, rotary machine, screen printer machine, linotype machine offset printer, etc.

6. Paper Industries: chipper roll grinder, cut off saw, edgers, flotation cell and chips saws, etc.

7. Building Construction Machinery: buffers, elevator floor polisher mixing machine, vibrator, hoists, crusher, etc.

8. Office Equipments: typewriter, plotters, camera, money drive, money sorting machine, data storage equipment, etc.

9. Glass and Plastic Industries: conveyor, carton sealers, grinders, creeper paper manufacturing machine, lintec backing, etc.

10. Home Appliances: vacuum cleaner, laundry machine, icecream machine, sewing machine, kitchen equipments, etc.

      

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

clamp coupling

Contribution of Beam Couplings to Dampening Vibrations and Reducing Resonance

Beam couplings play a significant role in dampening vibrations and reducing resonance in motion control systems. Their unique design and material properties contribute to this effect in the following ways:

  • Helical Beam Design:

    Beam couplings consist of helical beams that provide flexibility and torsional elasticity. When subjected to vibrations or dynamic loads, the helical beams can absorb and dampen these oscillations. The ability to flex and twist helps in dissipating vibrational energy and preventing it from propagating through the system.

  • Vibration Absorption:

    Beam couplings are designed to be relatively compliant, which allows them to absorb vibrations and shocks generated during operation. This absorption capability is especially beneficial when dealing with high-speed applications or systems with rapid accelerations and decelerations.

  • Reduced Resonance:

    Resonance occurs when the natural frequency of a system matches the frequency of external vibrations or disturbances. This phenomenon can lead to excessive vibration amplitudes, potentially causing damage or affecting the system’s performance. Beam couplings’ torsional elasticity helps to mitigate the risk of resonance by altering the system’s natural frequency, reducing the likelihood of resonance occurring within the operating range.

  • Material Selection:

    The choice of materials for beam couplings also contributes to their ability to dampen vibrations. Materials with good damping characteristics, such as certain alloys or elastomers, are commonly used to manufacture beam couplings. These materials can dissipate vibrational energy as heat, minimizing the transmission of vibrations to other system components.

  • Shock Absorption:

    In addition to dampening vibrations, beam couplings can absorb shocks or sudden impact loads. When the system experiences sudden changes in load or abrupt movements, the flexible nature of beam couplings helps to cushion and distribute the shock, protecting the machinery and reducing stress on the connected components.

Overall, the combination of the helical beam design, vibration absorption properties, reduced resonance, and appropriate material selection makes beam couplings effective in dampening vibrations and enhancing the overall stability and performance of motion control systems. When properly selected and installed, beam couplings can contribute to smoother and quieter operation, increased system reliability, and reduced wear and tear on critical components.

clamp coupling

Beam Couplings Accommodating Different Shaft Diameters and Mounting Configurations

Beam couplings are highly versatile and can accommodate different shaft diameters and mounting configurations, making them suitable for a wide range of motion control applications. Their design and construction allow for flexibility in adapting to various shaft sizes and mounting setups. Here’s how beam couplings achieve this:

  • Multiple Bore Sizes:

    Beam couplings are available in various bore sizes to match different shaft diameters. Manufacturers offer a wide range of coupling sizes, ensuring that there is an appropriate coupling size available to fit the specific shaft diameter of your application. Some beam couplings come with set screws or clamps that securely fasten onto the shafts, accommodating shafts of different sizes within the coupling’s specified range.

  • Clamp or Set Screw Mounting:

    Beam couplings commonly employ clamp or set screw mounting methods to connect to the shafts. Clamp-style couplings use split hubs that can be tightened around the shaft with screws, providing a secure and concentric connection. Set screw couplings, on the other hand, utilize screws to press against the shaft, achieving a firm and non-marring grip.

  • Step Bores and Adapters:

    In cases where the shafts have significantly different diameters or when transitioning between metric and imperial measurements, some beam couplings offer step bores or adapter options. Step bores feature multiple bore sizes within the same coupling, allowing for flexibility in accommodating various shaft diameters. Adapters are also available to bridge the gap between different shaft sizes.

  • Customization:

    For unique or specialized applications, manufacturers may offer customization options for beam couplings. This could include modifying the bore sizes, lengths, or other design parameters to suit specific shaft dimensions and mounting configurations.

  • Compatibility with Misalignment:

    Beam couplings are designed to handle misalignment between the shafts. This characteristic provides additional flexibility during installation, as it can compensate for slight positioning errors or misalignment during assembly.

When selecting a beam coupling for your application, ensure that the chosen coupling size matches the shaft diameters within the specified range. Also, consider the mounting method that best suits your setup, whether it’s clamp-style or set screw-type. For applications with specific requirements, such as adapting between different shaft sizes, explore options with step bores or adapters or inquire about custom solutions from coupling manufacturers.

Overall, the ability of beam couplings to accommodate different shaft diameters and mounting configurations makes them a versatile and widely-used choice in motion control systems across various industries.

clamp coupling

Different Types of Beam Couplings for Various Applications

Beam couplings come in various designs to meet different application requirements. Each type offers specific advantages and limitations. Here are some common types of beam couplings used in various applications:

  • 1. Single-Beam Couplings:

    Single-beam couplings consist of a single helical beam that connects the two shafts. They are simple in design and provide good flexibility for compensating angular misalignment. These couplings are ideal for applications where space is limited, and angular misalignment is the primary concern.

  • 2. Multi-Beam Couplings:

    Multi-beam couplings have multiple helical beams arranged in parallel around the circumference of the coupling. This design enhances the coupling’s flexibility and allows for better compensation of angular, axial, and parallel misalignment. Multi-beam couplings are commonly used in applications requiring more comprehensive misalignment compensation and smoother torque transmission.

  • 3. Bellows Couplings:

    Bellows couplings use a thin-walled, accordion-like metal bellows as the flexible element. This design provides high flexibility, making them suitable for applications with significant angular and axial misalignment. Bellows couplings are also effective at damping vibrations and providing precise motion control in sensitive systems.

  • 4. Servo Disc Couplings:

    Servo disc couplings consist of a series of thin metal discs stacked together with a central spacer. This design allows for high torsional rigidity and excellent misalignment compensation. Servo disc couplings are often used in precision applications where minimal backlash and high torque transmission are required.

  • 5. Slit Couplings:

    Slit couplings have one or more slits cut into the helical beam, providing additional flexibility. The slits allow for better compensation of misalignment and increased torsional flexibility. Slit couplings are commonly used in applications with moderate misalignment requirements and where vibration dampening is essential.

  • 6. Step Beam Couplings:

    Step beam couplings have helical beams with varying thickness along their length. This design provides a progressive flexibility gradient, allowing for smoother torque transmission and better misalignment compensation. Step beam couplings are often used in applications where shock absorption and vibration isolation are crucial.

  • 7. Jaw Couplings with Beam Elements:

    Jaw couplings with beam elements combine the features of traditional jaw couplings with the flexibility of beam couplings. They offer excellent misalignment compensation, shock absorption, and easy installation, making them suitable for various power transmission and motion control applications.

The choice of the most suitable beam coupling type depends on the specific requirements of the application, such as the level of misalignment, torque capacity, damping requirements, and the overall system design. Understanding the strengths and limitations of each type will help in selecting the best beam coupling for a particular application, ensuring efficient and reliable performance in various mechanical systems.

China wholesaler Best Price Beam Disc Coupling Flexible Mechanical Jaw Coupling with Elastomer D30 L40-30c for CNC Router  China wholesaler Best Price Beam Disc Coupling Flexible Mechanical Jaw Coupling with Elastomer D30 L40-30c for CNC Router
editor by CX 2024-03-03