Product Description

Product Description

CNC Machining Milling Turning Aluminum Stainless Steel Low Force Link Slimline Strain Sensor Connect Body Liner Stage  Liner Stage Thread Adaptor Beam Coupling

Product Parameters

Processing CNC Machining, CNC Milling and Turning, Drilling, Grinding, Stamping, Tapping, Bending
Surface Finishing Electroplating, Anodizing, Polishing, Chrome Plating, Zinc plating, Nickel plating, Electrophoresis, Sandblasting, Passivation, Powder Coating, Painting, etc.
Certification standards ISO9001:2015  IAFT16949:2016
Service type OEM and ODM
Tolerance +/-0.005mm
Surface Roughness Ra0.8
Dimensions According to Customer’s Drawing
Processing Equipments CNC Machining Center, CNC Milling Machine, CNC Turning Machine, CNC Gantry, Vertical CNC center, Horizantal CNC center, Drilling Machine,Grinding Machine, etc.
Testing Equipments CMM,Laser Precision Detection Projector, Pull Tester, Automatic Optical Inspector, Salt Spray Tester, Durometer, Tensile Machine Calipers
Application Automotive industry, Medical DeviceS, UAV Industry, Communication Electronics Appliance, Robot, Mold Components Processed and Fixrure, 0il, Gas and Other Heavy Equipments.
Drawing Format PDF/JPEG/AI/PSD/CAD/Dwg/Step/LGS
MOQ 1 piece
QC Policy 100% inspection with report, random inspection before shipment, third-party inspections can be provided CHINAMFG request
Packaging PE bags or bubble bags, boxes, cartons, pallet or as per customers’ requirements
Trade Terms EXW, FOB, CIF, As per customers’ request
Payment Terms L/C, T/T, D/P, Western Union, Paypal, Money Gram, etc.
Delivery Time 7-14 working days after deposit payment received for samples,official orders negotiable
Production Capacity 1000000pcs/Months

 

Company Profile

Production Line

 

 

Equipments List

Certifications

FAQ

1: Are You a Manufacturer?
Yes, we specialize in manufacturing of CNC machining parts over 20 years.

2. When Can I Get the Price?
Quotation will be provid within 24 hours after inquiry is received with full product information and drawing.

3: How Long is Your Delivery Time?
It’s depends on the products requirements ang quantity. Normally the mass order lead time is around 14-20days.

4: How Can You Asure the Quality?
100% inspection and we could provide full inspection reports as customer requests before shipment.

5: Do You Provide Samples ? 
Yes, we can provide samples, please provide full product information and drawing.

6: Why Choose Us?
We have advanced technology and equipment, world-class team for techincal and aftersales service. We provide high quality product ,competitive price with fast lead time

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

clamp coupling

Contribution of Beam Couplings to Dampening Vibrations and Reducing Resonance

Beam couplings play a significant role in dampening vibrations and reducing resonance in motion control systems. Their unique design and material properties contribute to this effect in the following ways:

  • Helical Beam Design:

    Beam couplings consist of helical beams that provide flexibility and torsional elasticity. When subjected to vibrations or dynamic loads, the helical beams can absorb and dampen these oscillations. The ability to flex and twist helps in dissipating vibrational energy and preventing it from propagating through the system.

  • Vibration Absorption:

    Beam couplings are designed to be relatively compliant, which allows them to absorb vibrations and shocks generated during operation. This absorption capability is especially beneficial when dealing with high-speed applications or systems with rapid accelerations and decelerations.

  • Reduced Resonance:

    Resonance occurs when the natural frequency of a system matches the frequency of external vibrations or disturbances. This phenomenon can lead to excessive vibration amplitudes, potentially causing damage or affecting the system’s performance. Beam couplings’ torsional elasticity helps to mitigate the risk of resonance by altering the system’s natural frequency, reducing the likelihood of resonance occurring within the operating range.

  • Material Selection:

    The choice of materials for beam couplings also contributes to their ability to dampen vibrations. Materials with good damping characteristics, such as certain alloys or elastomers, are commonly used to manufacture beam couplings. These materials can dissipate vibrational energy as heat, minimizing the transmission of vibrations to other system components.

  • Shock Absorption:

    In addition to dampening vibrations, beam couplings can absorb shocks or sudden impact loads. When the system experiences sudden changes in load or abrupt movements, the flexible nature of beam couplings helps to cushion and distribute the shock, protecting the machinery and reducing stress on the connected components.

Overall, the combination of the helical beam design, vibration absorption properties, reduced resonance, and appropriate material selection makes beam couplings effective in dampening vibrations and enhancing the overall stability and performance of motion control systems. When properly selected and installed, beam couplings can contribute to smoother and quieter operation, increased system reliability, and reduced wear and tear on critical components.

clamp coupling

Materials Used in Manufacturing Beam Couplings

Beam couplings are commonly made from various materials, each offering unique properties that suit different application requirements. Some of the most common materials used in manufacturing beam couplings include:

  • Aluminum:

    Aluminum is a lightweight and cost-effective material commonly used in beam coupling construction. Aluminum beam couplings are ideal for applications where weight reduction is essential, such as in robotics or aerospace systems. They provide moderate mechanical strength and flexibility while offering good resistance to corrosion.

  • Stainless Steel:

    Stainless steel is a popular choice for beam couplings due to its excellent mechanical properties and high corrosion resistance. Stainless steel couplings are well-suited for demanding applications that require strength, durability, and resistance to harsh environments. They are commonly used in industries such as food processing, medical equipment, and marine applications.

  • Brass:

    Brass is a material known for its good electrical conductivity and moderate strength. Brass beam couplings are suitable for specific applications that require electrical grounding or where non-magnetic properties are essential. However, compared to stainless steel or aluminum, brass couplings may have slightly lower mechanical strength and corrosion resistance.

  • Plastic/Polymer:

    Plastic or polymer beam couplings are chosen for their lightweight and cost-effective nature. They are often used in applications where weight reduction is critical, and they offer electrical insulation properties. However, plastic couplings may have lower mechanical strength compared to metal couplings and are not suitable for high-torque applications or extreme environmental conditions.

  • Carbon Steel:

    Carbon steel is a robust and widely used material for beam couplings. Carbon steel couplings offer good mechanical strength and are suitable for various industrial applications. However, they may not provide the same level of corrosion resistance as stainless steel and may require proper maintenance to prevent rusting.

The choice of material depends on the specific needs of the application, including factors such as required strength, weight constraints, environmental conditions, and corrosion resistance. Manufacturers often provide a range of material options for their beam couplings to accommodate diverse industrial and commercial uses.

clamp coupling

Selecting the Appropriate Beam Coupling for Your Motion Control Needs

Choosing the right beam coupling for your specific motion control needs involves considering several factors to ensure optimal performance and reliability. Here’s a step-by-step guide to help you make an informed decision:

  1. Identify Application Requirements:

    Start by understanding the specific requirements of your motion control application. Consider factors such as the type and amount of misalignment, torque capacity, shaft sizes, operating environment, speed, and precision requirements.

  2. Types of Beam Couplings:

    Familiarize yourself with the different types of beam couplings available, such as single-beam, multi-beam, bellows, servo disc, slit, step beam, and jaw couplings with beam elements. Each type has unique characteristics that cater to different motion control needs.

  3. Misalignment Compensation:

    Assess the level of misalignment in your application. If you require compensation for angular, axial, and parallel misalignment, multi-beam or bellows couplings might be suitable. For primarily angular misalignment, a single-beam coupling could be sufficient.

  4. Torsional Rigidity:

    Consider the required torsional rigidity for precise motion control. Servo disc couplings offer high torsional rigidity and low backlash, making them ideal for precision applications, while slit couplings provide more torsional flexibility and vibration dampening.

  5. Environmental Factors:

    Take into account the operating environment, including temperature, humidity, and exposure to chemicals. Choose a beam coupling with materials that can withstand the environmental conditions of your application.

  6. Speed and Torque Capacity:

    Evaluate the speed and torque requirements of your motion control system. Ensure that the selected coupling can handle the specified torque while maintaining the desired speed without compromising performance.

  7. Space Constraints:

    If your application has limited space, consider compact designs like single-beam or slit couplings. These types can efficiently fit into tight spaces while providing the necessary misalignment compensation.

  8. Backlash and Precision:

    For applications that demand minimal backlash and high precision, servo disc couplings are a suitable choice due to their exceptional torsional rigidity and accurate torque transmission.

  9. Vibration Dampening:

    If your system requires vibration dampening to protect sensitive components or improve overall performance, consider beam couplings with features like slits or bellows.

  10. Customization Options:

    Check if the coupling supplier offers customization options. Some manufacturers can tailor the beam coupling to meet specific application requirements, providing an optimal solution for your motion control needs.

  11. Consult with Experts:

    If you are uncertain about the best beam coupling choice for your application, consult with motion control experts or the coupling manufacturer’s technical support team. They can offer valuable insights and recommendations based on your specific needs.

By carefully evaluating these factors and considering the advantages and limitations of each beam coupling type, you can select the most appropriate coupling for your motion control needs. Making the right choice will contribute to the efficiency, reliability, and longevity of your motion control system.

China wholesaler CNC Machining Milling Turning Aluminum Stainless Steel Low Force Link Slimline Strain Sensor Connect Body Liner Stage Liner Stage Thread Adaptor Beam Coupling  China wholesaler CNC Machining Milling Turning Aluminum Stainless Steel Low Force Link Slimline Strain Sensor Connect Body Liner Stage Liner Stage Thread Adaptor Beam Coupling
editor by CX 2024-02-26